Qinwen Fan

Publications

  1. A −121.5 dB THD Class-D Audio Amplifier with 49 dB Suppression of LC Filter Nonlinearity and Robust to +/−30% LC Filter Spread
    H. Zhang; M. Berkhout; K. Makinwa; Q. Fan;
    In Dig. Techn. Paper IEEE Symposium on VLSI Circuits (VLSI),
    June 2021. DOI: 10.23919/VLSICircuits52068.2021.9492441

  2. A 25A Hybrid Magnetic Current Sensor with 64mA Resolution, 1.8MHz Bandwidth, and a Gain Drift Compensation Scheme
    A. Jouyaeian; Q. Fan; M. Motz; U. Ausserlechner; K. A. A. Makinwa;
    In Dig. Techn. Papers IEEE International Solid-State Circuits Conference (ISSCC),
    February 2021. DOI: 10.1109/ISSCC42613.2021.9365767

  3. A 28-W, -102.2-dB THD+N Class-D Amplifier Using a Hybrid Δ Σ M-PWM Scheme
    S. Karmakar; H. Zhang; R. van Veldhoven; L. J. Breems; M. Berkhout; Q. Fan; K. A. A. Makinwa;
    IEEE Journal of Solid-State Circuits,
    September 2020. DOI: 10.1109/JSSC.2020.3023874
    Abstract: ... This article presents a 28-W class-D amplifier for automotive applications. The combination of a high switching frequency and a hybrid multibit Δ ΣM-PWM scheme results in high linearity over a wide range of output power, as well as low AM-band EMI. As a result, only a small (150-kHz cutoff frequency), and thus low-cost, LC filter is needed to meet the CISPR-25 EMI average limit (150 kHz-30 MHz) with 10-dB margin. At 28-W output power, the proposed amplifier achieves 91% efficiency while driving a 4-Ω load from a 14.4-V supply. It attains a peak THD+N of 0.00077% (-102.2 dB) for a 1-kHz input signal.

  4. A High-Linearity and Low-EMI Multilevel Class-D Amplifier
    H. Zhang; S. Karmakar; L. J. Breems; Q. Sandifort; M. Berkhout; K. A. A. Makinwa; Q. Fan;
    IEEE Journal of Solid-State Circuits,
    Volume 56, pp. 1176-1185, December 2020. DOI: 10.1109/JSSC.2020.3043815
    Abstract: ... This article presents a Class-D audio amplifier for automotive applications. Low electromagnetic interference (EMI) and, hence, smaller LC filter size are obtained by employing a fully differential multilevel output stage switching at 4.2 MHz. A modulation scheme with minimal switching activity at zero input reduces idle power, which is further assisted by a gate-charge reuse scheme. It also achieves high linearity due to the high loop gain realized by a third-order feedback loop with a bandwidth of 800 kHz. The prototype, fabricated in a 180-nm high-voltage BCD process, achieves a minimum THD+N of −107.8 dB/−102 dB and a peak efficiency of 91%/87% with 8- and 4- Ω loads, respectively, while drawing 7-mA quiescent current from a 14.4-V supply. The prototype meets the CISPR 25 Class 5 EMI standard with a 5.7-dB margin using an LC filter with a cutoff frequency of 580 kHz.

  5. A 28W -108.9dB/-102.2dB THD/THD+N Hybrid ΔΣ−PWM Class-D Audio Amplifier with 91% Peak Efficiency and Reduced EMI Emission
    S. Karmakar; H. Zhang; R.Van Veldhoven; L. Breems; M. Berkhout; Q. Fan; K.A.A Makinwa;
    In Dig. Techn. Papers IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 350-352, 2 2020. DOI: 10.1109/ISSCC19947.2020.9063001

  6. A −107.8 dB THD+N Low-EMI Multi-Level Class-D Audio Amplifier
    H. Zhang; S. Karmakar; L. Breems; Q. Sandifort; M. Berkhout; K. Makinwa; Q. Fan;
    In Dig. Techn. Paper IEEE Symposium on VLSI Circuits (VLSI),
    June 2020. DOI: 10.1109/VLSICircuits18222.2020.9162793

  7. Capacitance-to-digital converter
    H. Fan; M. Pertijs; B. A. J. Buter;
    Patent, US 10,732,577, August 2020.

  8. Design Considerations for a Mems Coriolis Mass Flow Sensing System
    A.C. de Oliveira; T. Schut; J. Groenesteijn; Q. Fan; R.Wiegerink; K.A.A. Makinwa;
    In MFHS,
    2019.

  9. A MEMS Coriolis Mass Flow Sensing System with Combined Drive and Sense Interface
    A. de Oliveira; T. Schut; J. Groenesteijn; Q. Fan; R. Wiegerink; K. Makinwa;
    In Proc. IEEE Sensors,
    October 2019.

  10. A MEMS Coriolis Mass Flow Sensing System with Combined Drive and Sense Interface
    A.C. de Oliveira; T. Schut; J. Groenesteijn; Q. Fan; R.Wiegerink; K.A.A. Makinwa;
    In Proc. IEEE SENSORS,
    10 2019. DOI: 10.1109/SENSORS43011.2019.8956695

  11. Capacitively-Coupled Chopper Instrumentation Amplifiers: An Overview
    Qinwen Fan; Kofi A. A. Makinwa;
    In Proc. IEEE Sensors,
    10 2018. DOI: 10.1109/ICSENS.2018.8589958

  12. Fully Capacitive Coupled Input Choppers
    J. H. Huijsing; Q. Fan; K. A. A. Makinwa;
    Patent, US US10033369B2, July 2018. Assignee: Maxim Integrated Products Inc.

  13. Capacitively-Coupled Chopper Operational Amplifiers
    Q. Fan; K.A.A. Makinwa; J.H. Huising;
    Springer, , 2017.

  14. A High-Resolution Capacitance-to-Digital Converter based on Iterative Discharging
    Hao Fan;
    MSc thesis, Delft University of Technology, October 2017.
    document

  15. Advances in Low-Offset Opamps
    Q. Fan; J.H. Huising; K.A.A. Makinwa;
    Switzerland: Springer, , 2016.

  16. Fast-Settling Capacitive-Coupled Amplifiers
    J.H. Huijsing; Q. Fan; K.A.A. Makinwa; D. Fu; J. Wu; L. Zhou;
    Patent, 9,294,049, March 22 2016.

  17. A 110dB SNR ADC with ±30V input common-mode range and 8¿V Offset for current sensing applications
    L. Xu; B. Gönen; Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In M Romdhane; LC Fujino; J Anderson (Ed.), Proceedings of the 2015 IEEE International Solid-State Circuits Conference,
    IEEE, pp. 89-91, 2015. Harvest Session 5.2.

  18. Measurement and analysis of current noise in chopper amplifiers
    J. Xu; Q. Fan; J.H. Huijsing; C. van Hoof; R.F. Yazicioglu; K.A.A. Makinwa;
    IEEE Journal of Solid State Circuits,
    Volume 48, Issue 7, pp. 1575-1584, 2013. Harvest.

  19. A multi-path chopper-stabilized capacitively coupled operational amplifier with 20V-input-common-mode range and 3μV offset
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In A Chandrakasan (Ed.), Digest of Technical Papers - 2013 IEEE International Solid-State Circuits Conference (ISSCC 2013),
    IEEE, pp. 176-177, 2013. Harvest Session 10.

  20. Capacitively coupled chopper amplifiers
    Q. Fan;
    PhD thesis, Delft University of Technology, 2013. Onder embargo; staat niet in de IR van de Bibliotheek.

  21. A 21 nV/√ Hz chopper-stabilized multi-path current-feedback instrumentation amplifier with 2 μ v offset
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    IEEE Journal of Solid State Circuits,
    Volume 47, Issue 2, pp. 464-475, February 2012. Harvest Article number: 6112184.

  22. Measurement and analysis of input current noise in chopper amplifiers
    J. Xu; Q. Fan; J.H. Huijsing; C. van Hoof; R.F. Yazicioglu; K.A.A. Makinwa;
    In Y. Deval; J-B Begueret; D Belot (Ed.), Proceedings 2012 38th European Solid-State Circuit Conference,
    IEEE, pp. 81-84, 2012.

  23. A capacitively coupled chopper instrumentation amplifier with a ±30V common-mode range, 160dB CMRR and 5μV offset
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In L Fujino (Ed.), Digest of Technical Papers - 2012 IEEE International Solid-state Circuits Conference,
    IEEE, pp. 374-375, 2012. Harvest Article number: 6177045.

  24. A capacitively-coupled chopper operational amplifier with 3μV Offset and outside-the-rail capability
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In Y. Deval; J-B Begueret; D Belot (Ed.), Proceedings 2012 38th European Solid-State Circuit Conference,
    IEEE, pp. 73-76, 2012.

  25. A 1.8 µW 60 nV/√Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes
    Qinwen Fan; Fabio Sebastiano; Johan H. Huijsing; Kofi A.A. Makinwa;
    {IEEE} J. Solid-State Circuits,
    Volume 46, Issue 7, pp. 1534 - 1543, July 2011. DOI: 10.1109/JSSC.2011.2143610
    Keywords: ... CMOS integrated circuits;choppers (circuits);instrumentation amplifiers;wireless sensor networks;CMOS technology;CMRR;DC servo loop;PSRR;biopotential sensing;capacitively-coupled chopper instrumentation amplifier;chopping ripple;current 1.8 muA;electrode offset suppression;low-power precision instrumentation amplifier;noise efficiency factor;positive feedback loop;power 1.8 muW;rail-to-rail input common-mode range;ripple reduction loop;size 65 nm;voltage 1 V;wireless sensor nodes;Capacitors;Choppers;Impedance;Noise;Sensors;Topology;Wireless sensor networks;Bio-signal sensing;chopping;high power efficiency;low offset;low power;precision amplifier;wireless sensor nodes.

    Abstract: ... This paper presents a low-power precision instrumentation amplifier intended for use in wireless sensor nodes. It employs a capacitively-coupled chopper topology to achieve a rail-to-rail input common-mode range as well as high power efficiency. A positive feedback loop is employed to boost its input impedance, while a ripple reduction loop suppresses the chopping ripple. To facilitate bio-potential sensing, an optional DC servo loop may be employed to suppress electrode offset. The IA achieves 1 µV offset, 0.16% gain inaccuracy, 134 dB CMRR, 120 dB PSRR and a noise efficiency factor of 3.3. The instrumentation amplifier was implemented in a 65 nm CMOS technology. It occupies only 0.1 mm² chip area (0.2 mm² with the DC servo loop) and consumes 1.8 µA current (2.1 µA with the DC servo loop) from a 1 V supply.

  26. Input characteristics of a chopped multi-path current feedback instrumentation amplifier
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In {De Venuto}, D; L Benini (Ed.), 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI),
    IEEE, pp. 61-66, 2011.

  27. A 21nV/¿Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2µV offset
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In H Hidaka; B. Nauta (Ed.), Digest of Technical Papers - 2010 IEEE International Solid-State Circuits Conference,
    IEEE, pp. 80-81, 2010.

  28. A 1.8µW 1-µV-offset capacitively-coupled chopper instrumentation amplifier in 65nm CMOS
    Qinwen Fan; Fabio Sebastiano; Johan H. Huijsing; Kofi A.A. Makinwa;
    In Proc. European Solid-State Circuits Conference,
    Sevilla, Spain, pp. 170 - 173, September14--16 2010. DOI: 10.1109/ESSCIRC.2010.5619902
    Keywords: ... CMOS integrated circuits;instrumentation amplifiers;CMOS;input impedance;noise efficiency factor;positive feedback loop;precision capacitively-coupled chopper instrumentation amplifier;rail-to-rail DC common-mode input range;ripple reduction loop;size 65 nm;Accuracy;Choppers;Impedance;Instruments;Noise;Resistors;Topology.

    Abstract: ... This paper describes a precision capacitively-coupled chopper instrumentation amplifier (CCIA). It achieves 1µV offset, 134dB CMRR, 120dB PSRR, 0.16% gain accuracy and a noise efficiency factor (NEF) of 3.1, which is more than 3x better than state-of-the-art. It has a rail-to-rail DC common-mode (CM) input range. Furthermore, a positive feedback loop (PFL) is used to boost the input impedance, and a ripple reduction loop (RRL) is used to reduce the ripple associated with chopping. The CCIA occupies only 0.1mm² in a 65nm CMOS technology. It can operate from a 1V supply, from which it draws only 1.8µA.

  29. A 2.1 µW Area-Efficient Capacitively-Coupled Chopper Instrumentation Amplifier for ECG Applications in 65 nm CMOS
    Qinwen Fan; Fabio Sebastiano; Johan H. Huijsing; Kofi A.A. Makinwa;
    In Proc. Asian Solid-State Circuits Conference,
    Beijing, China, pp. 1 - 4, November8--10 2010. DOI: 10.1109/ASSCC.2010.5716624
    Keywords: ... CMOS integrated circuits;amplifiers;biomedical electrodes;choppers (circuits);electrocardiography;CMOS technology;DC servo loop;ECG application;area efficient chopper instrumentation amplifier;capacitive feedback network;capacitively coupled chopper instrumentation amplifier;electrocardiography;electrode-tissue interface;power 2.1 muW;switched capacitor integrator;Choppers;DSL;Earth Observing System;Electrocardiography;Impedance;Instruments;Noise.

    Abstract: ... This paper describes a capacitively-coupled chopper instrumentation amplifier for use in electrocardiography (ECG). The amplifier's gain is accurately defined by a capacitive feedback network, while a DC servo loop rejects the DC offset generated by the electrode-tissue interface. The high-pass corner frequency established by the servo loop is realized by an area-efficient switched-capacitor integrator. Additional feedback loops are employed to boost the amplifier's input-impedance to 80 MΩ and to suppress the chopper ripple. Implemented in a 65 nm CMOS technology, the amplifier draws 2.1 µA from a 1 V supply and occupies 0.2 mm².

  30. Very thin SiC membranes for micromachines vacuum sensors
    H.T.M. Pham; C. Fan; G. Pandraud; J.F. Creemer; N.M. van der Pers; P. Visser; K. Kwakernaak; P.M. Sarro;
    In s.n. (Ed.), Proceedings of IEEE sensors 2008,
    IEEE Sensors, pp. 1143-1146, 2008.

  31. A chopper instrumentation amplifier for biopotential applications
    Q. Fan;
    PhD thesis, Delft University of Technology, 2008.

BibTeX support