PhD student
Electronic Instrumentation (EI), Department of Microelectronics

PhD thesis (Oct 2015): A High-Precision Capacitive Sensor System for Displacement Measurements
Promotor: Gerard Meijer, Stoyan Nihtianov

Expertise: Precision analog circuits and data converters

Themes: Industrial Electronic Instrumentation


Ruimin Yang was born on April 8th, 1985, in Yuxi, China. He received his BSc degree in Electronic Science and Technology from Southeast University, China, in 2007. After that, he purchased his MSc degree in Microelectronics from Delft University of Technology, Delft, The Netherlands. From January 2010, he started his PhD work at Electronic Instrumentation Laboratory, TU Delft, working on the design of a high precision capacitance-to-digital converter (CDC).

Projects history

Capacitance-to-Digital Conversion

We have developed a wide variety of energy-efficient capacitance-to-digital converters for the readout of capacitive sensors

  1. A Precision Capacitance-to-Digital Converter with 16.7-bit ENOB and 7.5 ppm/°C Thermal Drift
    R. Yang; M. A. P. Pertijs; S. Nihtianov;
    IEEE Journal of Solid-State Circuits,
    Volume 52, Issue 11, pp. 3018-3031, November 2017. DOI: 10.1109/jssc.2017.2734900
    Abstract: ... This paper presents a high-precision capacitance-to-digital converter (CDC) for displacement measurement in advanced industrial applications, based on a charge-balancing third-order delta–sigma modulator. To achieve high precision, this CDC employs a precision external resistive reference and a quartz-oscillator-based time reference instead of a reference capacitor. To minimize the error contribution of the CDC circuitry, various precision circuit techniques, such as chopping and auto-zeroing, are applied at both system and circuit level. Measurement results of the prototype realized in 0.35-μm CMOS technology show that the CDC achieves an rms resolution of 42 aF across a capacitance range from 6 to 22 pF, corresponding to an effective number of bits (ENOB) of 16.7 bit. The conversion time for one measurement is 10.5 ms, during which the CDC consumes 230 μA from a 3.3-V single supply. The measured thermal stability is within ±7.5 ppm/°C across a temperature range from 20 °C to 70 °C, which represents a significant improvement compared to the state of the art. After a two-point calibration, all ten measured samples from one batch show absolute accuracy below ±25 fF across the entire capacitance measurement range.

  2. Error analysis of a charge-balancing capacitive sensor interface with resistive reference
    R. Yang; S. Nihtianov;
    In O Kaynak (Ed.), Proc. of the 23rd IEEE International Symposium on Industrial Electronics,
    IEEE, pp. 274-280, 2014. Harvest.

  3. Noise analysis and characterization of a charge-balancing-based capacitive sensor interface with a resistive reference
    R. Yang; S. Nihtianov;
    In JC Miguez; D Slomovitz (Ed.), Proc. of the IEEE International Instrumentation and Measurement Technology Conference,
    IEEE, pp. 1182-1186, 2014. Harvest.

  4. Capacitive sensor interface with precision references
    R. Yang; M. A. P. Pertijs; S. Nihtianov; P. Haak;
    In Proc. IEEE International Conference on Industrial Technology (ICIT),
    IEEE, pp. 358‒390, March 2014. DOI: 10.1109/icit.2014.6894896

  5. A time/resistor-referenced capacitive sensor interface for displacement measurement in the sub-nanometer range
    R. Yang; S. Nihtianov;
    In RC Luo (Ed.), Proc. of the 22nd IEEE International Symposium on Industrial Electronics,
    IEEE, pp. 1-5, 2013. Harvest.

  6. Autonomous self-aligning and self-calibrating capacitive sensor system
    O.S. van de Ven; D. Yang; S. Xia; J.P. van Schieveen; J.W. Spronck; R.H. Munnig Schmidt; S. Nihtianov;
    In M Kamel; F Karray; H Hagras (Ed.), Proc. of the 3rd International Conference on Autonomous and Intelligent Systems,
    Springer Verlag, pp. 10-17, 2012.

  7. From MEMS to NEMS: Scaling Cantilever Sensors
    C.K. Yang;
    PhD thesis, Delft University of Technology, 2012.

  8. Performance optimization of self-alignment system for capacitive sensors
    J. van Schieveen; R. Yang; S. Nihtianov; J. Spronck;
    In S Bogosyan; K Ohnishi (Ed.), Proc. of the IEEE International Conference on Mechatronics,
    IEEE, pp. 648-653, 2011.

  9. High-performance eddy current sensor interface for small displacement measurement
    M.R. Nabavi; R. Yang; S. Nihtianov;
    In {Dyer et al.}, C (Ed.), Proc. of the International Instrumentation and Measurement Technology Conference,
    IEEE, pp. 58-62, 2011.

  10. Highly stable capacitance-to-digital converter with improved dynamic range
    R. Nojdelov; R. Yang; X. Guo; S. Nihtianov;
    In S Mukhopadhyay; A Fuchs; KP Jayasundera (Ed.), Proc. of the IEEE Fifth International Conference on Sensing Technology,
    IEEE, pp. 140-144, 2011.

  11. Qualification of a stable capacitive sensor interface, based on capacitance-resistance comparison
    R. Yang; A. Fekri; R. Nojdelov; S. Nihtianov;
    In E Lewis; T Kenny (Ed.), Proc. of the IEEE Sensors conference,
    IEEE, pp. 1181-1184, 2011.

  12. Demonstration of PECVD SiC-SiO2-SiC horizontal slot waveguides
    G. Pandraud; A.B. Neira; E. Margallo Balbas; C.K. Yang; P.M. Sarro;
    IEEE Photonics Technology Letters,
    Volume 22, Issue 6, pp. 398-400, 2010.

  13. Optimized low-power thermal stepper system for harsh and inaccessible environments
    R. Yang; J.P. van Schieveen; S. Nihtianov; J.W. Spronck;
    In s.n. (Ed.), Proceedings IECON 2010,
    IEEE, pp. 1779-1784, 2010.

  14. Electronic system for control of a thermally actuated alignment device
    R. Yang; J.P. van Schieveen; S. Nihtianov; J.W. Spronck;
    In {Rodríguez et al}, J (Ed.), Proceedings ICIT 2010,
    IEEE, pp. 1581-1586, 2010.

  15. Method for determining a spring constant for a deformable scanning probe microscope element, and scanning probe microscope and calibration device arranged for determing a spring constant for a probe element
    H. Sadeghian Marnani; C. Yang; F. van Keulen; J.F.L. Goosen; A. Bossche;

  16. Method for measuring a temperature, electromechanical device for measuring a temperature
    H. Sadeghian Marnani; F. van Keulen; C.K. Yang; J.F.L. Goosen; A. Bossche;
    2009. Op naam van TU Delft; 2003431; Op naam van TU Delft.

  17. Electronic control of a thermal actuator for a fully autonomous self-alignment and self-caliration functionality
    C.K. Yang;
    PhD thesis, Delft University of Technology, 2009.

  18. Tribler: a social-based peer-to-peer system
    J.A. Pouwelse; P.J. Garbacki; J. Wang; A. Bakker; J. Yang; A. Iosup; D.H.J. Epema; M.J.T. Reinders; {van Steen}, MR; HJ Sips;
    Concurrency and Computation: Practice & Experience,
    Volume 20, Issue 2, pp. 127-138, 2008.

  19. Thin-film encapsulation of a silicon field emission electron source
    F. Santagata; C.K. Yang; J.F. Creemer; P.M. Sarro;
    In s.n. (Ed.), Proceedings Eurosensors XXII,
    Eurosensors XXII, pp. 625-628, 2008.

  20. Processing of inertial sensors using SF6-O2 Cryogenic plasma process
    G. Craciun; H. Yang; L. Pakula; M.A. Blauw;
    In s.n. (Ed.), SAFE 2003 Semiconductor advances for future electronics,
    Stichting voor de Technische Wetenschappen, pp. 683-686, 2003. CD-ROM.

  21. Remote sensing and petroleum leakage: a review and case study
    F.D. van der Meer; P. Dijk; H. van der Werff; H. Yang;
    Terra Nova: the European journal of geosciences,
    Volume 24, Issue 1, pp. 1-17, 2002.

  22. Imaging spectrometry and petroleum geology
    F.D. van der Meer; H. Yang; S.B. Kroonenberg; H. Lang; P. Dijk; K.H. Scholte; H. van der Werff;
    F.D. van der Meer; {de Jong}, S (Ed.);
    Kluwer Academic Publishers, , pp. 219-232, 2002. Nog niet eerder opgevoerd.

  23. Modified Reynolds' equation for squeeze-film air damping of hole-plates
    M. Bao; H. Yang; Y. Sun;
    In Eurosensors 2002,
    Czech Technical University, pp. 43-44, 2002.

  24. Imaging spectrometry and petroleum geology
    F.D. van der Meer; H. Yang; S.B. Kroonenberg; H. Lang; P. Dijk; K.H. Scholte; H. van der Werff;
    {van der Meer}, F; {de Jong}, S (Ed.);
    Kluwer Academic Publishers, , pp. 219-238, 2000.

  25. Final Technical Report of project BE-1167 MULTISTRESS (period 1-1-96 to 31-12-98) Improving multilayered metallic materials by controlling stress, strain and interface quality and new equipment for determing these characteristics.
    O. Thomas; B. Chenevier; E.J. Mittemeijer; J.E. Sundgren; D. de Boer; A. Charaï; L. Roux; P. Gergaud; A Böttger; H. Yang; F Torregrossa; A Leenaers; P Sandstrom;
    TU Delft, , 1999.

BibTeX support

Last updated: 26 Dec 2018

Ruimin Yang

  • Left in 2014